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Group - A (Analysis II)

Answer all the questions of this group. Maximum you can obtain 17 marks in this group.

1.

2.

Find three distinct subsets of R with same boundary {1,2,3}. Give justification. 3]
Prove that a complete metric space without any isolated point is uncountable. 3]
Let A= {(z,y) e R?:x ¢ Q or y ¢ Q}. Show that A is neither open nor compact in R?. [4]
Prove that Q is not a G subset of R. 3]
Let f: R — R be a polynomial. Show that f(C) is closed in R if C is closed in R. 5]
Define a metric on X = NU {0} such that (X, d) is compact. Justify your answer. 3]

Group - B (Linear Algebra IIB)

Answer any 2 questions from 7-9 in this group. 2 x 4 = 8 marks]



7. Let V be the subspace of R]x] of polynomials of degree at most 3. Equip V with the inner
product (f|g) fo t)dt. Apply the Gram-schmidt process to the basis {1, z, 2% 23}.  [4]

8. Show that the product of two self-adjoint operators is self-adjoint if and only if the two operators
commute. [4]

9. Let T be a linear operator on a finite dimensional complex inner product space. Prove that T is
normal if and only if 7" = T} +iT5, where T and T are self adjoint operators which commute. [4]

Group - C (Differential Equation II)

Answer all the questions of this group. Maximum you can obtain 15 marks in this group.
10. Solve the differential equation (3]

Y+ 2z — 2z dr + z+x—2y dy + r+y—2z
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11. Factorise the operator on the left hand side of
[D*+(1—2)D — 1]y =
and hence solve it. [4]

12. Find all the eigen-values and eigen-functions of the Sturm-Liouville problem [5]

(2%) 4+ Avy = 0, y(1) = 0, y(e) = 0

13. Find L~ { v } 3]

4+4a4

14. Prove that L {32t} = tan™" (%) and hence, find L {#2%}. Does the Laplace transform of <4t

exist? Justify your answer. (3]

Group - D (Applications of Calculus)

Answer all questions in this group. [2 x 5 = 10 marks]

15. Compute the signed curvature of the curve v : R — R? defined by ~(t) = (ae® cost, ae’ sint),

where a and b are real constant, a # 0. 5]

16. Show that each of the curves
(rcosa — ysina — b)® = c(zsina + ycosa)?,

where « is a parameter and b, ¢ are real constants with ¢ # 0, has a cusp and that the cusps all
lie on a circle. 5]



